Видеоурок «Взаимно простые числа»
В разделе Математика 10 уроков
Содержание:
§ 1  Понятие взаимно простых чисел

В этом уроке Вы узнаете, какие числа называются взаимно простыми, и научитесь их определять.

Итак, что подразумевается под понятием «взаимно простые числа»?

Рассмотрим два натуральных числа 25 и 26. Это составные числа.

Натуральное число 25 делится без остатка на 1, 5, 25.

А натуральное число 26 делится без остатка на 1, 2, 13, 26.

Видим, что числа 25 и 26 имеют только один общий делитель – это число 1.

Такие числа называют взаимно простыми.

Таким образом, можно сделать вывод:

Натуральные числа называются взаимно простыми, если их наибольший общий делитель равен 1.

§ 2  Определение взаимно простых чисел

Рассмотрим пример.

Даны пары натуральных чисел 14 и 28, 15 и 22.

Определим, какие из данных пар являются взаимно простыми.

Для этого необходимо определить, какие делители имеет каждое из чисел.

14 без остатка делится на 1, 2, 7, 14;

28 без остатка делится на 1, 2, 4, 7, 14, 28.

Мы видим, что числа 14 и 28, кроме единицы, имеют и другие общие делители - 2, 7, 14, а значит, не являются взаимно простыми числами.

Теперь рассмотрим другую пару чисел 15 и 22.

Число 15 делится без остатка на 1, 3, 5, 15, а число 22 делится без остатка на 1, 2, 11, 22. Мы видим, что числа 15 и 22 имеют только один общий делитель - 1.

Значит, пара натуральных чисел 15 и 22 являются взаимно простыми числами.

Теперь возьмем еще два составных натуральных числа 45 и 32.

Натуральное число 45 делится на 1, 3, 5, 9, 15, 45, а натуральное число 32 делится на 1, 2, 4, 8, 16, 32.

Видим, что эти числа имеют только один общий делитель - 1.

Значит, числа 45 и 32 являются взаимно простыми.

Разложим эти числа на простые множители. 45=3*3*5, 32=2*2*2*2*2.

Легко заметить, что взаимно простые натуральные числа 45 и 32 в разложении на простые множители не содержат одинаковых простых множителей.

Таким образом, приходим к выводу, что разложения на простые множители взаимно простых чисел не содержат одних и тех же простых множителей.

Итак, в этом уроке Вы узнали, какие числа называются взаимно простыми, а также научились определять взаимно простые числа.

Список использованной литературы:
  1. Математика. 6 класс. Учебник. Виленкин Н.Я., Жохов В.И. и др. 2013. -288 с.
  2. Вычисляем без ошибок. Работы с самопроверкой по математике 5-6 классы. Автор - Минаева С.С. - 2014.
  3. Математика. 6 класс И.И. Зубарева, А.Г. Мордкович. 2009.

Подпишись и будь в курсе новых событий и новостей!