Кратным натурального числа а называют натуральное число, которое делится без остатка на а.
Что же такое, наименьшее общее кратное натуральных чисел?
Возьмем два натуральных числа 30 и 45 . Выпишем кратные этих чисел, т.е. натуральные числа, которые без остатка делятся на 30 и 45.
На 30 без остатка делятся следующие числа: 30, 60, 90, 120, 150, 180 ...
На 45 без остатка делятся следующие числа: 45, 90, 135, 180 ...
Видим, что и на 30, и на 45 делятся 90, 180…, но наименьшим является натуральное число 90. Именно его называют наименьшим общим кратным чисел 30 и 45.
Наименьшим общим кратным натуральных чисел а и в называют наименьшее натуральное число, которое без остатка делится и на а, и на в или, другими словами, наименьшее натуральное число, которое кратно и а, и в.
Для определения наименьшего общего кратного натуральных чисел, необязательно выписывать все кратные данных чисел. Возьмем натуральные числа 10, 15 и 45. Разложим эти числа на простые множители.
10 = 2 ∙ 5
15 = 3 ∙ 5
45 = 3 ∙ 3 ∙ 5
Выпишем множители первого числа и добавим к ним недостающие множители из разложения двух других чисел и перемножим их, получаем:
2 ∙ 5 ∙ 3 ∙ 3 = 90
Натуральное число 90 является наименьшим общим кратным чисел 10, 15 и 45.
Чтобы найти наименьшее общее кратное натуральных чисел достаточно:
1) разложить данные натуральные числа на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей и записать результат.
Заметим, что если одно из данных чисел делится на все остальные, то именно это число и будет являться наименьшим общим кратным данных чисел.
Например: у чисел 4, 8, 16 и 32 наименьшим общим кратным является число 32.
Подпишись и будь в курсе новых событий и новостей!