В алгебре часто при упрощении выражений и различных вычислениях используются переместительный и сочетательный законы.
Эти законы также справедливы для векторов.
Вспомним правило сложения векторов – правило треугольника.
Пусть нам даны два вектора а и b.
От произвольно выбранной точки А отложим вектор АВ, равный вектору а.
Затем от точки В отложим вектор ВС, равный вектору b.
Вектор АС называется суммой векторов а и b.
Воспользуемся этим правилом треугольника для доказательства следующей теоремы.
Теорема:
Для любых векторов а , b и с справедливы равенства:
сумма векторов а и b равна сумме векторов b и а (переместительный закон);
сумма векторов а плюс b и с равна сумме векторов а и b плюс с (сочетательный закон).
Для доказательства переместительного закона рассмотрим случай, когда векторы а и b не коллинеарны, т.е. ненулевые и не лежат на одной или параллельных прямых (случай коллинеарных векторов рассмотрите самостоятельно).
От произвольной точки А отложим вектор АВ, равный вектору а, и вектор АD, равный вектору b.
Основываясь на построенных векторах, достроим параллелограмм АВСD так, что вектор АВ равен вектору DС, а вектор АD равен вектору ВС.
По правилу треугольника сумма векторов АВ и ВС равна вектору АС, т.е. равна сумме векторов а и b.
С другой стороны, сумма векторов AD и DC также равна вектору АС, т.е. сумме векторов b и а.
Таким образом, сумма векторов а и b равна сумме векторов b и а.
Переместительный закон доказан.
Для доказательства сочетательного закона отложим от произвольной точки А вектор АВ, равный вектору а, от точки В вектор ВС, равный вектору b, и от точки С вектор CD, равный вектору с.
Рассмотрим сумму векторов а плюс b и вектора с с точки зрения правила треугольника: сумма векторов а и b равна вектору АС, в свою очередь, сумма вектора АС и вектора с равна вектору АD.
Теперь рассмотрим сумму векторов а и b плюс с: сумма векторов b и с, согласно рисунку, равна вектору ВD, в свою очередь, сумма векторов а и ВD равна вектору АD.
Исходя из этого, сумма векторов а плюс b и с равна сумме векторов а и b плюс с.
Что доказывает сочетательный закон.
Теорема доказана.
Важно отметить, что при доказательстве переместительного закона было обосновано правило параллелограмма сложения неколлинеарных векторов: чтобы сложить неколлинеарные векторы а и b, необходимо от произвольной точки А отложить вектор АВ, равный вектору а, и вектор AD, равный вектору b, затем достроить параллелограмм АВСD, тогда вектор АС равен сумме векторов а и b.
Правило треугольника и правило параллелограмма находят сумму двух векторов, но как сложить несколько векторов?
Чтобы сложить несколько векторов, необходимо сложить первый вектор со вторым, затем сложить их сумму с третьим вектором и так далее.
Из законов сложения векторов следует, что сумма нескольких векторов не зависит от того, в каком порядке происходит сложение.
Рассмотрим рисунок, отражающий сумму векторов а, b и с:
от произвольной точки А отложен вектор АВ, равный вектору а, затем от точки В отложен вектор ВС, равный вектору b, и, наконец, от точки С отложен вектор CD, равный вектору с.
В результате получается вектор АD, равный сумме векторов а, b и с.
Если продолжить процесс откладывания векторов, можно построить сумму четырех, пяти, любого количества векторов.
Правило построения суммы нескольких векторов называется правилом многоугольника: если А1, А2, …,Аn – произвольные точки плоскости, то сумма векторов А1А2, А2А3, …, Аn –1An равна вектору А1Аn.
Это равенство справедливо для всех точек А1, А2, …, Аn, в частности, когда некоторые из них совпадают.
Важно заметить, что если начало первого вектора совпадает с концом последнего вектора, то сумма данных векторов равна нулевому вектору.
Итак, подведем итоги:
– Для любых векторов а, b и с справедливы равенства:
сумма векторов а и b равна сумме векторов b и а;
сумма векторов а плюс b и с равна сумме векторов а и b плюс с.
– Чтобы сложить неколлинеарные векторы а и b, необходимо от точки А отложить вектор АВ, равный вектору а, и вектор AD, равный вектору b, затем достроить параллелограмм АВСD, тогда вектор АС равен сумме векторов а и b (правило параллелограмма).
– Если А1, А2 … An – произвольные точки плоскости, то сумма векторов
А1А2, А2А3,.., Аn–1An равна вектору А1Аn (правило многоугольника).
Подпишись и будь в курсе новых событий и новостей!