Давайте познакомимся с методом подобия, который применяется при решении задач на построение треугольников, а также рассмотрим, как свойства подобных треугольников используются для проведения измерительных работ на местности.
Рассмотрим применение метода подобия при решении задач на построение. Данный метод состоит в том, что на основании некоторых данных строят треугольник, подобный искомому, а затем, используя остальные данные, строят уже сам искомый треугольник.
Задача: Построить треугольник по данным двум углам и биссектрисе при вершине третьего угла.
Даны два угла и отрезок – биссектриса при вершине третьего угла.
Требуется построить треугольник по данным элементам.
Построение:
Построим треугольник подобный искомому. Для этого сначала начертим произвольный отрезок А1В1, затем построим треугольник А1В1С с углами А1 и В1, равными данным углам. С помощью циркуля и линейки разделим угол С пополам, получим биссектрису и отложим на ней отрезок СD, равный данному отрезку. Через точку D проведем прямую, параллельную А1В1, эта прямая пересечет стороны угла С в точках А и В. Треугольник АВС – искомый.
В самом деле, по построению биссектриса СD треугольника АВС равна данному отрезку, а так как А1В1 параллельна АВ, то ∠А=∠А1, ∠В=∠В1 как соответственные углы при параллельных прямых А1В1 и АВ и секущих АС и ВС. Значит, два угла треугольника АВС соответственно равны данным углам. Таким образом, треугольник АВС удовлетворяет всем требованиям задачи.
Эта задача имеет единственное решение, и оно возможно, если сумма двух данных углов меньше 180°.
Подобием пользуются архитекторы, конструкторы, геодезисты, художники и многие другие специалисты. Перед тем как строить дом, завод или другое сооружение, сначала создают его план – уменьшенное изображение будущего строения. Увеличивая фотоснимки, тоже получают подобные изображения.
С помощью подобия треугольников можно измерять высоты деревьев, вышек, заводских труб и т.д.
Предположим, что нам нужно определить высоту дерева.
Обозначим высоту дерева СD. На некотором расстоянии от дерева поставим шест АВ с вращающейся планкой и направим планку на верхнюю точку дерева в точку С. Далее отметим на земле точку М, в которой прямая АС пересекается с ВD. По рисунку видим, получаются два подобных треугольника МВА и МDС (угол М – общий, шест и дерево перпендикулярны к поверхности земли), треугольники подобны по первому признаку подобия треугольников, т.е. по двум углам. Так как треугольники подобны, то стороны пропорциональны, т.е.
Длину шеста АВ, а также расстояния МВ и МD мы всегда можем измерить.
Например: МВ = 3 м, МD = 6,3 м; АВ = 1,5 м, тогда
Также для определения высоты дерева можно использовать зеркало.
Луч света FD, отражается от зеркала в точке D и попадает в глаз человека в точку В, получается подобие треугольников.
Таким способом Фалес еще в 6 веке до н.э. измерил высоту египетской пирамиды, удивив тогдашних мудрецов.
Свойства подобных треугольников применяются и в задачах, где нужно определить расстояние до недоступной точки.
Предположим, мы сидим на одном берегу реки, т.е. в точке А, а на другом берегу другой человек - это точка В, и нам нужно определить расстояние до него – АВ.
Для этого выбираем на местности точку С, измеряем расстояние АС. Затем, используя астролябию - прибор, с помощью которого измеряются углы на местности, измеряем углы А и С. Далее на листе бумаги строим произвольный треугольник А1В1С1, у которого ∠А=∠А1, ∠C=∠C1 . Треугольники АВС и А1В1С1 подобны по первому признаку подобия треугольников, значит,
Таким образом, по известным нам расстояниям мы можем теперь найти неизвестную величину- расстояние до недоступной точки.
Подпишись и будь в курсе новых событий и новостей!