Видеоурок «Практические приложения подобия треугольников»
В разделе Геометрия 9 уроков
Содержание:
§ 1  Метод подобия и его применение при решении задач на построение

Давайте познакомимся с методом подобия, который применяется при решении задач на построение треугольников, а также рассмотрим, как свойства подобных треугольников используются для проведения измерительных работ на местности.

Рассмотрим применение метода подобия при решении задач на построение. Данный метод состоит в том, что на основании некоторых данных строят треугольник, подобный искомому, а затем, используя остальные данные, строят уже сам искомый треугольник.

Задача: Построить треугольник по данным двум углам и биссектрисе при вершине третьего угла.

Даны два угла и отрезок – биссектриса при вершине третьего угла.

Требуется построить треугольник по данным элементам.

Построение:

Построим треугольник подобный искомому. Для этого сначала начертим произвольный отрезок А1В1, затем построим треугольник А1В1С с углами А1 и В1, равными данным углам. С помощью циркуля и линейки разделим угол С пополам, получим биссектрису и отложим на ней отрезок СD, равный данному отрезку. Через точку D проведем прямую, параллельную А1В1, эта прямая пересечет стороны угла С в точках А и В. Треугольник АВС – искомый.

В самом деле, по построению биссектриса СD треугольника АВС равна данному отрезку, а так как А1В1 параллельна АВ, то ∠А=∠А1, ∠В=∠В1 как соответственные углы при параллельных прямых А1В1 и АВ и секущих АС и ВС. Значит, два угла треугольника АВС соответственно равны данным углам. Таким образом, треугольник АВС удовлетворяет всем требованиям задачи.

Эта задача имеет единственное решение, и оно возможно, если сумма двух данных углов меньше 180°.

Подобием пользуются архитекторы, конструкторы, геодезисты, художники и многие другие специалисты. Перед тем как строить дом, завод или другое сооружение, сначала создают его план – уменьшенное изображение будущего строения. Увеличивая фотоснимки, тоже получают подобные изображения.

§ 2  Определение высоты предмета

С помощью подобия треугольников можно измерять высоты деревьев, вышек, заводских труб и т.д.

Предположим, что нам нужно определить высоту дерева. 

Обозначим высоту дерева СD. На некотором расстоянии от дерева поставим шест АВ с вращающейся планкой и направим планку на верхнюю точку дерева в точку С. Далее отметим на земле точку М, в которой прямая АС пересекается с ВD. По рисунку видим, получаются два подобных треугольника МВА и МDС (угол М – общий, шест и дерево перпендикулярны к поверхности земли), треугольники подобны по первому признаку подобия треугольников, т.е. по двум углам. Так как треугольники подобны, то стороны пропорциональны, т.е.

Длину шеста АВ, а также расстояния МВ и МD мы всегда можем измерить.

Например: МВ = 3 м, МD = 6,3 м; АВ = 1,5 м, тогда

Также для определения высоты дерева можно использовать зеркало.

Луч света FD, отражается от зеркала в точке D и попадает в глаз человека в точку В, получается подобие треугольников.

Таким способом Фалес еще в 6 веке до н.э. измерил высоту египетской пирамиды, удивив тогдашних мудрецов.

§ 3  Определение расстояния до недоступной точки

Свойства подобных треугольников применяются и в задачах, где нужно определить расстояние до недоступной точки.

Предположим, мы сидим на одном берегу реки, т.е. в точке А, а на другом берегу другой человек - это точка В, и нам нужно определить расстояние до него – АВ.

Для этого выбираем на местности точку С, измеряем расстояние АС. Затем, используя астролябию - прибор, с помощью которого измеряются углы на местности, измеряем углы А и С. Далее на листе бумаги строим произвольный треугольник А1В1С1, у которого ∠А=∠А1, ∠C=∠C1 . Треугольники АВС и А1В1С1 подобны по первому признаку подобия треугольников, значит,

Таким образом, по известным нам расстояниям мы можем теперь найти неизвестную величину- расстояние до недоступной точки.

Список использованной литературы:
  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013. – 383 с. : ил.
  2. Н.Ф.Гаврилова. Поурочные разработки по геометрии. 8 класс. – Москва, «Вако», 2005.
  3. Л.С.Атанасян и др. Методические рекомендации к учебнику. – Москва, «Просвещение», 2001.
  4. Д.А.Мальцева. Математика. 9 класс ГИА 2014. – Москва, Народное образование, 2013.
  5. О.В.Белицкая. Геометрия. 8 класс. Тесты. – Саратов, «Лицей», 2009.
  6. С.П.Бабенко, И.С.Маркова. Геометрия 8. Комплексная тетрадь для контроля знаний. – Москва, «Аркти», 2014.

Подпишись и будь в курсе новых событий и новостей!