Видеоурок «Преобразование рациональных выражений»
В разделе Алгебра 8 уроков
Преобразование рациональных выражений

В этом уроке поработаем с рациональными выражениями. На конкретных примерах рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Рациональное выражение – алгебраическое выражение, составленное из чисел, буквенных переменных, арифметических операций, возведения в натуральную степень, и знаков последовательности этих действий (скобок). Вместе со словосочетанием «рациональное выражение» в алгебре используют иногда термины «целое» или «дробное».

Например, выражения

являются и рациональными, и целыми.

Выражения

являются и рациональными, и дробными, т.к. в знаменателе находится выражение с переменной.

Не надо забывать, что дробь теряет смысл, если знаменатель обращается в нуль.

Основной целью урока будет приобретение опыта при решении задач на упрощение рациональных выражений.

Упрощение рациональных выражений — это применение тождественных преобразований, с целью упростить запись выражения (сделать короче и удобнее для дальнейшей работы).

Для преобразования рациональных выражений нам потребуются правила сложения (вычитания), умножения, деления и возведения в степень алгебраических дробей, все эти действия совершаются по тем же правилам, что и действия с обыкновенными дробями:

А также формулы сокращенного умножения:

При решении примеров по преобразованию рациональных выражений следует соблюдать следующий порядок действий: сначала выполняются действия в скобках, затем произведение/деление (либо возведение в степень), а затем действия сложения/вычитания.

Итак, рассмотрим пример 1:

необходимо упростить выражение

Решение:

Во-первых, выполняем действия в скобках.

Приводим алгебраические дроби к общему знаменателю и осуществляем сложение (вычитание) дробей с одинаковыми знаменателями по правилам, записанным выше.

Используя формулу сокращенного выражения (а именно квадрат разности), полученное выражение принимает вид:

Во-вторых, по правилам умножения алгебраических дробей перемножаем числители и отдельно знаменатели:

А затем сокращаем полученное выражение:

В результате проведенных преобразований получаем простое выражение

Рассмотрим более сложный пример 2 преобразования рациональных выражений: необходимо доказать тождество:

Доказать тождество – это установить, что при всех допустимых значениях переменных его левая и правая части равны.

Доказательство:

Чтобы доказать данное тождество, необходимо преобразовать выражение в левой части. Для этого следует соблюдать порядок действий, изложенный выше: в первую очередь выполняются действия в скобках, затем умножение, а затем уже сложение.

Итак, действие 1:

выполнить сложение/вычитание выражения в скобке.

Для этого раскладываем на множители выражения в знаменателях дробей и приводим данные дроби к общему знаменателю.

Так в знаменателе первой дроби выносим за скобку 3, в знаменателе второй – выносим знак минус и по формуле сокращенного умножения раскладываем на два множителя, а в знаменателе третьей дроби выносим за скобку x.

Общим знаменателем этих трех дробей будет выражение

Действие 2:

выполнить умножение дроби

Для этого прежде следует разложить на множители числитель первой дроби и возвести эту дробь в степень 2.

А при умножении дробей выполнить соответствующее сокращение.

Действие 3:

Суммируем первую дробь исходного выражения и получившуюся дробь

Для этого сначала разложим на множители числитель и знаменатель первой дроби и сократим:

Теперь остается только сложить полученные алгебраические дроби с разными знаменателями:

Таким образом, в результате 3-х действий и упрощения левой части тождества мы получили выражение из правой его части, а следовательно, доказали это тождество. Однако напомним, что тождество справедливо лишь для допустимых значений переменной x. Таковыми в данном примере являются любые значения x, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые значения x, кроме тех, при которых выполняется хотя бы одно из равенств:

Недопустимыми будут значения:

Итак, на конкретных примерах мы рассмотрели решение задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Список использованной литературы:
  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2. Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.:Мнемозина 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина 2013. - 112с.

Подпишись и будь в курсе новых событий и новостей!