В этом занятии познакомимся с понятием «подобные слагаемые» и на примерах научимся выполнять приведение подобных слагаемых, упрощая, таким образом, буквенные выражения.
Выясним смысл понятия «упрощение». Слово «упрощение» образовано от слова «упрости́ть». Упрости́ть – значит сделать простым, проще. Следовательно, упростить буквенное выражение – это сделать его более коротким, с минимальным количеством действий.
Рассмотрим выражение 9х + 4х. Это буквенное выражение, которое является суммой. Слагаемые здесь представлены в виде произведений числа и буквы. Числовой множитель таких слагаемых называется коэффициентом. В этом выражении коэффициентами будут числа 9 и 4. Обратите внимание, множитель, представленный буквой – одинаковый в обоих слагаемых данной суммы.
Вспомним распределительный закон умножения:
Чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные произведения сложить.
В общем виде записывается так: (а + b) ∙ с = ac + bc.
Этот закон выполняется в обе стороны ac + bc = (а + b) ∙ с
Применим его к нашему буквенному выражению: сумма произведений 9х и 4х равна произведению, первый множитель которого равен сумме 9 и 4, второй множитель – х.
9 + 4 = 13, получается 13х.
9х + 4 х = (9 + 4)х = 13х.
Вместо трех действий в выражении осталось одно действие – умножение. Значит, мы сделали наше буквенное выражение проще, т.е. упрости́ли его.
Слагаемые 9х и 4х отличаются только своими коэффициентами – такие слагаемые называют подобными. Буквенная часть у подобных слагаемых одинаковая. К подобным слагаемым относятся также числа и равные слагаемые.
Например, в выражении 9а + 12 – 15 подобными слагаемыми будут числа 12 и -15, а в сумме произведения 12 и 6а, числа 14 и произведения 12 и 6а (12 ∙6а + 14 + 12 ∙ 6а) подобными будут равные слагаемые, представленные произведением 12 и 6а.
Важно отметить, что слагаемые, у которых равны коэффициенты, а буквенные множители различны, подобными не являются, хотя к ним полезно иногда применить распределительный закон умножения, например, сумма произведений 5х и 5у равна произведению числа 5 и суммы х и у
5х + 5y = 5(x + y).
Упрости́м выражение -9а + 15а – 4 + 10.
Подобными слагаемыми в данном случае являются слагаемые -9а и 15а, так как они отличаются только своими коэффициентами. Буквенный множитель у них одинаковый, также подобными являются слагаемые -4 и 10, так как являются числами. Складываем подобные слагаемые:
-9а + 15а – 4 + 10
Считаем:
–9а + 15а = 6а;
-4 + 10 = 6.
Получаем: 6а + 6.
Упрощая выражение, мы находили суммы подобных слагаемых, в математике это называют приведением подобных слагаемых.
Если приведение подобных слагаемых вызывает затруднение, можно придумать к ним слова и складывать предметы.
Например, рассмотрим выражение:
2b – 5с + 8с
На каждую букву берем свой предмет: b-яблоко, с-груша, тогда получится: 2 яблока минус 5 груш плюс 8 груш.
Можем из яблок вычесть груши? Конечно, нет. А вот к минус 5 грушам прибавить 8 груш можем.
Приведем подобные слагаемые –5 груш + 8 груш. У подобных слагаемых буквенная часть одинаковая, поэтому при приведении подобных слагаемых достаточно выполнить сложение коэффициентов и к результату дописать буквенную часть:
(–5 + 8) груш - получится 3 груши.
Возвращаясь к нашему буквенному выражению, имеем –5 с + 8с = 3с. Таким образом, после приведения подобных слагаемых получим выражение 2b + 3с.
Итак, на этом занятии Вы познакомились с понятием «подобные слагаемые» и научились упрощать буквенные выражения путем приведения подобных слагаемых.
Подпишись и будь в курсе новых событий и новостей!