Видеоурок «Сравнение отрезков и углов. Измерение отрезков»
В разделе Геометрия 10 уроков
Содержание:
§ 1  Равенство геометрических фигур

http://helpx.adobe.com/ru/illustrator/using/images/rs_30.png

В повседневной жизни мы нередко встречаемся с равными фигурами: два одинаковых листа бумаги, две облицовочные плитки, две одинаковые тарелки. Представим, что вы решили украсить свой походный костюм нашивкой. Для этого вы рисуете на бумаге изображение, вырезаете его, затем накладываете на материал, из которого будет нашивка, и вновь вырезаете по границе. Фигуры, вырезанные из бумаги и из материала, равны, потому что они совмещаются одна с другой. На равенстве совмещенных фигур основаны раскрой материала для шитья одежды на фабриках, штамповка плоских деталей на заводе и т.д.

Итак, две геометрические фигуры называются равными, если их можно совместить наложением.

§ 2  Сравнение отрезков и углов

Рассмотрим два отрезка АВ и СD и ответим на вопрос: равны они или нет?

Для этого наложим отрезок АВ на отрезок СD так, чтобы один конец отрезков АВ совпал с концом отрезка СD, т.е. точка А совпала с точкой С.

Если при этом два других конца совместятся, т.е. точка В совпадет с точкой D, то отрезки АВ и СDравны.

Если точка В не совпадет с точкой D, то меньшим отрезком считается тот отрезок, который составляет часть другого. На рисунке отрезок СD составляет часть отрезка АВ, поэтому отрезок СD меньше отрезка АВ. Пишут СD < АВ.

А теперь возьмем отрезок МN и отметим на нем точку О так, что отрезки МО и NО будут равны.

Такая точка О, которая делит отрезок пополам, т.е. на два равных отрезка, называется серединой отрезка.

Рассмотрим два неразвернутых угла АОВ и СОD.

Чтобы сравнить два неразвернутых угла, надо наложить один угол на другой так, чтобы сторона одного угла совместилась со стороной другого, а две другие оказались по одну сторону от совместившихся сторон. Если сторона ОА совместится со стороной ОС, а сторона ОВ совместится со стороной ОD, то углы АОВ и СОD равны. Если же сторона ОВ не совместится со стороной ОD, то меньшим считается тот угол, который составляет часть другого. На рисунке угол АОВ меньше угла СОD, так как угол АОВ составляет часть угла СОD.

Рассмотрим развернутый угол, т.е. угол, обе стороны которого лежат на одной прямой. Неразвернутый угол составляет часть развернутого угла, поэтому любой развернутый угол больше любого неразвернутого угла, а два развернутых угла всегда равны.

А теперь из вершины угла проведем луч так, что он будет делить этот угол на два равных угла, такой луч называется биссектрисой угла.

На рисунке луч ОС – биссектриса угла АОВ, так как этот луч исходит из вершины угла АОВ и делит этот угол на два равных угла АОС и СОВ.

§ 3  Измерение отрезков. Единицы измерения

Фигуры на практике не всегда можно совместить наложением, например, невозможно таким образом проверить, равны ли земельные участки. Поэтому приходится искать другие способы установления равенства фигур. Для сравнения, например, отрезков пользуются измерением, т.е. находят длины отрезков. Чтобы измерить отрезок, надо его сравнить с некоторым другим отрезком, принятым за единицу измерения. Такой отрезок называют еще масштабным отрезком. За единицу измерения можно взять отрезок длиной 1 мм, 1 см, 1 дм, 1м, 1 км или другой отрезок. Выбрав единицу измерения, можно измерить любой отрезок, т.е. выразить его длину некоторым положительным числом. Это число показывает, сколько раз единица измерения и ее части укладываются в измеряемом отрезке.

Равные отрезки имеют равные длины.

Меньший отрезок имеет меньшую длину.

Когда произвольная точка С делит отрезок АВ на два отрезка, то длина всего отрезка АВ равна сумме длин отрезков АС и СВ.

Длину отрезка называют также расстояниеммежду его концами.

Международной единицей измерения выбран метр, это отрезок, приближенно равный одной сорока миллионной части земного меридиана. Эталон метра хранится во Франции, а копии хранятся во всех странах, в том числе и в России. Для измерения очень больших расстояний, например, измерение расстояний между планетами солнечной системы, используют единицу измерения световой год, это путь, который свет проходит в течение одного года. В старину на Руси использовались другие единицы измерения аршин, локоть, сажень.

Для измерения расстояний пользуются различными инструментами, например, линейка, штангенциркуль, рулетка.

§ 4  Решение задачи по теме урока

Решим задачу.

Отрезок ОD длиной 28 см разделен точкой М на два отрезка. Найдите расстояние между серединами получившихся отрезков ОМ и МD.

Решение:

Расстояние между серединами отрезков ОМ и МD– это расстояние между точками А и В, оно равно сумме отрезков АМ и МВ.

Точка А – середина отрезка ОМ, значит отрезки ОА и АМ равны, точка В – середина отрезка МD, значит отрезки МВ и ВD равны. Отрезок ОD равен сумме отрезков ОА, АМ, МВ, ВD. Так как отрезок ОА равен отрезку АМ, отрезок МВ равен ВD, то длина отрезка ОD равна удвоенной сумме отрезков АМ и МВ, т.е. двум отрезкам АВ.

Следовательно, длину отрезка АВ находим так: 28:2=14 см. Это искомое расстояние между серединами отрезков ОМ и МD.

Список использованной литературы:
  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М. : Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.
Использованные изображения:

Подпишись и будь в курсе новых событий и новостей!