В этом уроке Вы познакомитесь с такими понятиями, как уравнение и корень уравнения. Кроме того, узнаете, что значит решить уравнение и каким образом находить неизвестные переменные в нем.
Давайте рассмотрим задачу про грибы:
В корзине лежало несколько грибов. После того, как в нее положили еще 7 грибов, их стало 35. Сколько грибов было в корзине?
Решение:
Обозначим неизвестное число грибов, лежащих в корзине латинской буквой х, после того как в нее добавили еще 7 грибов, стало х + 7 грибов в корзине, то есть 35. Значит должно выполняться равенство х + 7 = 35. Теперь надо найти такое значение х, при котором выполняется данное равенство. По смыслу вычитания, таким значением будет разность чисел 35 минус 7, то есть 28. Или же х = 28. Значит, в корзине было 28 грибов.
Если в равенство входит буква, или правильно говорить переменная, то равенство может быть верным при одних значениях этой буквы, т.е. переменной и неверным при других ее значениях. Например, х + 11 = 24. Это равенство будет верным при х = 13, и неверным при х = 1 или х = 2 и так далее. Так вот, уравнением называют равенство, содержащее букву, значение которой надо найти. Или же уравнение – это равенство, содержащее переменную, значение которой надо найти.
Значение буквы, или значение переменной при котором из уравнения получается верное числовое равенство, называют корнем уравнения.
Вернемся к последнему примеру.
Равенство х + 11 = 24 можно назвать уравнением, так как оно содержит переменную х, значение которой надо найти. Корнем данного уравнения является число 13, так при этом значении уравнение превращается в верное числовое равенство: 13 + 11 = 24.
Что же значит решить уравнение? Это значит, что надо найти все его корни или убедиться, что корней нет, то есть уравнение не имеет ни одного корня.
Например, решите уравнение: х + 22 = 56.
Решение: по смыслу вычитания, неизвестное слагаемое равно разности суммы и известного слагаемого, поэтому х = 56 – 22, то есть х = 34. Число 34 является корнем уравнения х + 22 = 56, так как 34 + 22 = 56. Обратите внимание, как находить корень в таких уравнениях: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.
Следующий пример, решите уравнение 21 – х = 19.
Решение: по смыслу вычитания, число 21 является суммой х и 19, то есть х + 19 = 21. Из этого уравнения находим неизвестное слагаемое х = 21 – 19, получим х = 2. Число 2 является корнем уравнения 21 – х = 19, так как равенство 21 – 2 = 19 является верным.
Обратите внимание, чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
Рассуждая аналогичным образом, можно сформулировать еще одно правило, чтобы найти неизвестное уменьшаемое, надо к вычитаемому прибавить разность. Например, решите уравнение: у – 12 = 36. Для нахождения неизвестного уменьшаемого у, необходимо к разности 36 прибавить вычитаемое 12, получится 48. Ответ: корень уравнения у = 48. Действительно, если из 48 вычесть 12, получится 36.
Кстати, уравнение принято оформлять в столбик, найденное значение переменной подчеркивать горизонтальной линией, а ниже производить проверку уравнения, подставив полученный корень в исходное равенство.
При чтении уравнений и буквенных выражений помните, что названия латинских букв – переменных Х, Y, Z – мужского рода, а названия остальных латинских букв – среднего рода, например, «х=5», или «y=2» или же «а=7».
Названия букв в математике не склоняются. Например, данное выражение (х + 11 = 30) читается так: сумма х и одиннадцати равна тридцати.
Другой пример, данное уравнение (р – 15 = 47) можно прочитать как разность P и пятнадцати равна сорока семи.
Таким образом, на этом уроке Вы познакомились с такими понятиями, как уравнение и корень уравнения, а также узнали, что решить уравнение – это значит найти все его корни или убедиться, что корней нет. Кроме того, научились находить неизвестные переменные в уравнении.
Подпишись и будь в курсе новых событий и новостей!