Приближенное значение чисел с недостатком и избытком. Округление чисел

Юлия Константиновна Грачёва
Aug 2017

Содержание:

§1. Понятие о приближенном значении чисел

§2. Округление чисел

§3. Правило округления чисел

§1. Понятие о приближенном значении чисел

В жизни человека встречается два вида чисел: точные и приближённые.

Например, у квадрата четыре стороны, число 4 является точным.

Другая ситуация, на вопрос, сколько вам лет вы отвечаете 12, это приближенная величина, мы ведь не говорим 12 лет 7 месяцев 26 дней.

На практике мы часто не знаем точных значений величин. Никакие весы, как бы хорошо они ни были настроены, не могут показать абсолютно точный вес. Любой термометр показывает температуру с той или иной погрешностью. Наш глаз не в состоянии увидеть четко показания прибора, поэтому вместо того, чтобы иметь дело с точным значением величины, мы вынуждены оперировать с ее приближённым значением

Однако знание о приближённом числе уже даёт понимание о сути дела, и к тому же не всегда точное значение бывает необходимо.

Приближенные значения чисел в математике разделяют на:

1. приближенные значения с избытком;

2. приближенные значения с недостатком.

Например, про арбуз, который весит 9 кг 280 г, мы можем сказать, что его вес примерно равен 9 кг. Это приближенное значение с недостатком. А если бы его вес составлял 9 кг 980 грамм, мы бы сказали 10 кг – это приближенное значение с избытком.

Другой пример - если длина отрезка равна 25 см 3 мм, то 25 см – это приближенное значение длины отрезка с недостатком, а 26 см – это приближенное значение длины отрезка с избытком.

Итак, если число Х больше числа А, но меньше числа В, тогда А – является приближенным значением числа Х с недостатком, а число В - приближенным значением числа Х с избытком.

§2. Округление чисел

Давайте рассмотрим такие примеры:

1) число 58,79 больше чем 58, но меньше 59. Число 58,79 ближе расположено к натуральному числу 59;

2) число 181, 123 больше, чем 181, но меньше, чем 182. Число 181,123 расположено ближе к натуральному числу 181. То натуральное число, к которому дробь ближе называют округленным значением этого числа.

Округление чисел - это математическое действие, которое позволяет уменьшить количество цифр в числе, заменяя его приближенным значением.

Под округлением числа понимают отбрасывание одной или нескольких цифр в десятичном представлении числа. Замену числа ближайшим к нему натуральным числом или нулем называют округлением этого числа до целых.

Например, число 58,79 округляется до 59, так как число 59 расположено ближе, а число 181,123 округляется до 181.

§3. Правило округления чисел

А что делать, если расстояния до приближенного значения числа с недостатком и избытком равны, например, 23,5? Оказывается, округляют в большую сторону! Т.е. получится 24

Наверняка у вас возник вопрос: «А можно ли округлять не до целого?» Конечно! Округлять можно и до других разрядов, например, до десятых, сотых, тысячных или же до десятков, сотен, тысяч и так далее.

Существует четкое правило для округления чисел:

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения. Если за подчеркнутой цифрой стоит цифра 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Теперь стало понятно, почему число 23,5 округлили до 24.

Т.к. отбрасываемая цифра равна 5.

Пример 1.

Округлим число 86,275 до десятых.

Решение.

Подчеркнем цифру 2, отбрасываем цифры 7 и 5, которые следуют за разрядом десятых. За подчеркнутой цифрой 2 стоит цифра 7, поэтому цифру 2 увеличиваем на 1. Получаем 86,3. Записывают это так:

Пример 2.

Округлим число 6,6739 до сотых.

Решение.

Подчеркиваем цифру 7, отбрасываем цифры 3 и 9, которые следуют за разрядом сотых. За подчеркнутой цифрой 7 стоит цифра 3, поэтому цифру 7 оставляем без изменения. Получаем 6,67.

Записывают это так:

Таким образом, можно убедиться, что если десятичную дробь округляют до какого-нибудь разряда, то все следующие за этим разрядом цифры отбрасывают.

Пример 3.

Округлим число 8 154 до сотен.

Решение:

Подчеркиваем цифру 1, за ней следует цифра 5, значит 1 заменяем цифрой 2, а все последующие цифры нулями, то есть получится 8200.

Записывают это так:

Делаем вывод, что при округлении натурального числа до некоторого разряда все цифры последующих разрядов заменяются нулями.

Итак, перед вами несложный алгоритм, который позволяет правильно выполнить округление любого числа:

Первое: найти нужный разряд и подчеркнуть стоящую в нем цифру.

Второе: переписать все цифры, стоящие до нее.

Третье: заменить все цифры, стоящие после выделенной, нулями до конца целой части или отбросить все цифры, имеющиеся после выделенной, если они стоят после запятой.

Четвертое: увеличить выделенную цифру на единицу, если за этой цифрой стоит цифра 5,6,7,8,9 или переписать выделенную цифру без изменений, если за ней стоит цифра 0,1,2,3,4.

Таким образом, в ходе этого урока Вы узнали, что такое приближенные значения чисел с недостатком и избытком округление чисел, а также приобрели четкий алгоритм, который позволяет правильно выполнить округление любого числа!

Литература:

1. Математика 5 класс. Виленкин Н.Я., Жохов В.И. и др. 31-е изд., стер. - М: 2013.

2. Дидактические материалы по математике 5 класс. Автор - Попов М.А. - 2013 год

3. Вычисляем без ошибок. Работы с самопроверкой по математике 5-6 классы. Автор - Минаева С.С. - 2014 год

4. Дидактические материалы по математике 5 класс. Авторы: Дорофеев Г.В., Кузнецова Л.В. - 2010 год

5. Контрольные и самостоятельные работы по математике 5 класс. Авторы - Попов М.А. - 2012 год

6. Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / И. И. Зубарева, А. Г. Мордкович. — 9-е изд., стер. — М.: Мнемозина, 2009

Десятичные дроби. Сложение и вычитание десятичных дробей
Уроки этого раздела
Наверх